SMOOTH MAPS, PULLBACK PATH SPACES, CONNECTIONS, AND TORSIONS

KUO-TSAI CHEN

ABSTRACT. By generalizing the local version of the usual differential geometric notion of connections and that of torsions, a model for the pullback path space of a smooth map is constructed from the induced map of the de Rham complexes. The pullback path space serves not only as a homotopy fiber but also as a device reflecting differentiable properties of the smooth map. Applications are discussed.

Let M and N be C^{∞} manifolds or, more generally, differentiable spaces. Let M be connected with a base point x_1 and let $P(M; -, x_1)$ denote the space of smooth paths of M ending at x_1 . In order to study a smooth map $f: N \to M$, we associate functorially to f the pullback space E_f of the path fibration $P(M; -, x_1) \to M$ through the map f. In a heuristic sense, the path space of manifold expresses its dynamics, and the pullback path space E_f reflects the dynamics arising from the smooth map f.

Let k denote either the real or the complex number field. The behavior of the pullback space E_f is investigated through an algebraic model K[Y; [X]] constructed, under the assumption of simply-connectedness of M, as follows:

- (a) Let $X = \{X_1, X_2, ...\}$ be a basis of the graded reduced homology group $\tilde{H}_{*}(M; k)$ with the degree suppressed by 1. We choose a "Hodge type" direct sum decomposition of the de Rham complex $\Lambda(M)$ and determine uniquely both a differential ϑ for the graded free associative algebra k[X] and a generalized connection ω for the product vector bundle $k[X] \times M \to M$. With the differential ϑ , k[X] becomes a d.g. (differential graded) algebra.
- (b) Let $Y = \{Y_1, Y_2, ...\}$ be a basis for $H_*(N; k)$, and let k[Y; [X]] denote the free k[X]-module freely generated by Y. The de Rham complex $\Lambda(N)$ is a $\Lambda(M)$ -module via the induced map f^* : $\Lambda(M) \to \Lambda(N)$. Again, we choose a "Hodge type" direct sum decomposition for $\Lambda(N)$ and determine uniquely both a generalized torsion Φ and a differential ∂ for k[Y; [X]], which now become a d.g. right k[X]-module.

It turns out that, under mild conditions, the algebraic model $(k[Y;[X]], \theta)$ provides the correct cohomology. Moreover, the connection ω and the generalized torsion Φ give rise, through integration of differential forms, to a generalized

Received by the editors January 31, 1985 and, in revised form, November 18, 1985. 1980 Mathematics Subject Classification (1985 Revision). Primary 58A99; Secondary 53C99. This work was supported in part by NSF Grant MCS 8200775.

^{°1986} American Mathematical Society (XX)2-9947/86 \$1.00 + \$.25 per page

transport, namely, a chain map

$$(0.1) C_{\star}(E_{f}) \to k[Y; [X]]$$

from the smooth chain complex $C_*(E_f)$ to the algebraic model with an induced homology isomorphism.

The mechanism of determining the differential ϑ of the d.g. algebra k[X] via the de Rham complex $\Lambda(M)$ consists of the connection ω and a twisting cochain condition (see [5]). The mechanism of determining the differential ϑ and the transport for the d.g. right k[X]-module k[Y;[X]] via the map $f^*: \Lambda(M) \to \Lambda(N)$ consists of a generalized torsion Φ (called a canonical element) and a torsion condition. In §§1-4, we explain the notions of connections, torsions, and transport and how the twisting cochain condition and the torsion condition yield both the differential and the transport (0.1).

A proof of Theorem 4.1 is given in §5. In §6, we establish the isomorphism $H_{*}(E_{f}; k) \simeq H_{*}(k[Y; [X]]; k)$ in the case where both M and N are C^{∞} manifolds with M simply connected.

This work is a continuation of previous works on the special case where N consists of a single point. This means that E_f becomes the smooth loop space of M and that the model is the noncommutative formal power series algebra k[[X]] (see [4, 5] and Gugenheim [9]). In this case, Hain [11] gives an explicit relation between the model $(k[[X]], \partial)$ and Sullivan's minimal model.

From a pure homological-algebraic point of view, our model represents a "concise" Eilenberg-Moore spectral sequence in a one-sided case. It is obtained by a perturbation of the differential of the E^1 term. The reader is referred to the recent work [18] of Tanré regarding other models of similar nature (see also [1, 8, 10, 12,-14, 16, 17, 19]). A distinctive feature of our approach here is the transport (0.1), which provides a direct link between the geometric and algebraic aspects of the method.

As in the author's previous works, the symbol Λ is used to denote the de Rham complex functor.

1. Formal power series connections. Let M be a C^{∞} manifold (or, more generally, a differentiable space in the sense of [5]).

Let k be either the real or the complex number field. Let k[[X]] be the algebra of formal power series in the indeterminates $X = \{X_1, X_2, \dots\}$, which are noncommutative. Each X_i is assigned a nonnegative degree deg X_i so that k[[X]] is nonnegative graded.

Let $\Lambda(M)$ denote the de Rham complex of C^{∞} forms of M. Let J be the automorphism of $\Lambda(M)$ given by $w \mapsto (-1)^p w$ for every p-form w on M. Let A be a differential graded subalgebra of $\Lambda(M)$. Let A[[X]] be the noncommutative formal power series ring of the indeterminates X with coefficients in A. Then the exterior differential d and the operator J extend from A to A[[X]] by acting on the coefficients. By a k[[X]]-valued connection on M (restricted to A), we mean an element of A[[X]] of the type

$$\omega = \sum w_i X_i + \sum w_{ij} X_i X_j + \cdots,$$

where the coefficients are forms belonging to A with

$$\deg w_i = 1 + \deg X_i, \quad \deg w_{i,i} = 1 + \deg X_i X_i, \dots$$

2. The transport. Associated to every k[[X]]-valued connection ω on M, there is a transport

$$(2.1) T = 1 + \int \omega + \int \omega \omega + \cdots$$

which is an element of $\Lambda(P(M))[[X]]$. For further details, see [4 and 5].

By a derivation ϑ of k[[X]], we mean a graded linear endomorphism of degree -1 of k[[X]] such that

$$\partial (X_i X_i \cdots X_k) = (\partial X_i) X_i \cdots X_j + (-1)^{\deg X_i} X_i \partial (X_i \cdots X_k)$$

and

$$\partial \left(a_0 + \sum a_i X_i + \sum a_{ij} X_i X_j + \cdots \right) = \sum a_i \partial X_i + \sum a_{ij} \partial \left(X_i X_j\right) + \cdots$$

Each derivation of k[[X]] extends to a derivation of $\Lambda(M)[[X]]$ (or $\Lambda(P(M))[[X]]$). Let $p_0, p_1: P(M) \to M$ be the endpoint maps such that $p_0(\gamma) = \gamma(0)$ and $p_1(\gamma) = \gamma(1)$. Thus $p_0^*\omega$ and $p_1^*\omega$ are elements of $\Lambda(P(M))[[X]]$. Theorem 3.3.1 of [5] states:

Let ω be a k[[X]]-valued connection on M. If ϑ is a derivation of k[[X]] satisfying the twisting cochain condition

$$\partial \omega + d\omega - J\omega \wedge \omega = 0,$$

then

(2.3)
$$dT = \partial T - p_0^* \omega \wedge T + JT \wedge p_1^* \omega.$$

EXAMPLE. Let w be an n-form on S^n so that $\int_{S^n} w = 1$, n > 1. Let X be an indeterminate of degree n - 1. Take $\omega = wX$ as a k[[X]]-valued connection on S^n . We have the transport

$$T=1+\int wX+\int wwX^2+\cdots,$$

where $\int w$, $\int ww$,... are forms on the path space P(M) of respective degrees n-1, 2(n-1),....

Let $C_*(P(M))$ denote the normalized smooth cubic chain complex of P(M). Then there is a map

$$(2.4) C_*(P(S^n)) \to k[[X]]$$

through integration of the coefficients of T.

Let us equip k[[X]] with the trivial differential θ so that $\theta(X_iX_j\cdots X_k)=0$. Then the twisting cochain condition holds. We have $dT=-p_0^*\omega\wedge T+JT\wedge p_1^*\omega$. The endpoint maps p_0 and p_1 restricted to the smooth loop space $P(S^n;x_1,x_1)$ at a base point x_1 are constant maps. Therefore, restricted to the loop space $P(S^n;x_1,x_1)$, we have dT=0. This leads to the conclusion that the map (2.4) restricted to $C_*(P(S^n;x_1,x_1))$ is a chain map. It turns out that this chain map induces a homology isomorphism $H_*(P(S^n;x_1,x_1);k) \simeq k[[X]]$.

3. The torsion condition. Denote by k[Y; [X]] the free graded right k[[X]]-module on the generators $Y = \{Y_1, Y_2, \dots\}$ with deg $Y_{\lambda} \ge 0$. A typical element of k[Y; [X]] can be written as

$$\sum_{\lambda} Y_{\lambda} (a_{\lambda} + \sum_{i} a_{\lambda i} X_{i} + \sum_{i} a_{\lambda i j} X_{i} X_{j} + \cdots)$$

with the a's belonging to k. A derivation ∂ of k[[X]] can be extended to a derivation ∂ of k[Y; [X]] of degree -1 by assigning values to each ∂Y_{λ} .

Let N be a C^{∞} manifold (or, more generally, a differentiable space), and let $f: N \to M$ be a C^{∞} map. Let B be a subcomplex of the de Rham complex $\Lambda(N)$ such that (a) the inclusion induces an isomorphism $H^*(B) \simeq H_{DR}(N)$ and (b) B is an A-module via f^* . Then B[Y; [X]] is well defined and is a right A[[X]]-module. A typical element of B[Y; [X]] can be written as

$$\Phi = \sum_{\lambda} Y_{\lambda} (v_{\lambda} + \sum_{i} v_{\lambda_{i}} X_{i} + \cdots), \qquad v_{\lambda}, v_{\lambda_{i}}, \ldots \in B.$$

Let ω be a k[[X]]-valued connection and ∂ a derivation of k[[X]] so that the twisting cochain condition (2.2) holds. Let ∂ be extended to a derivation of k[Y;[X]], and let

$$\Phi = \sum_{\lambda} Y_{\lambda} (v_{\lambda} + \sum v_{\lambda i} X_{i} + \cdots)$$

be an element of B[Y; [X]] such that $\deg v_{\lambda ij\cdots k} = \deg Y_{\lambda}X_iX_j\cdots X_k$. We say that the pair (Φ, ∂) satisfies the torsion condition (with respect to the map f and the connection ω) if

$$\partial \Phi = d\Phi - J\Phi \wedge f^*\omega.$$

Observe that the r.h.s. can be taken as the torsion of Φ .

Let x_1 be a point (or a finite set of points) of M. Denote by $P(M; -, x_1)$ the space of C^{∞} paths ending at x_1 in M. Then $P(M; -, x_1)$ is a differentiable subspace of P(M).

In order to see the role played by the torsion condition, we need to introduce the space $E_f = \{(y, \gamma): y \in N, \ \gamma \in P(M; -, x_1), \ \gamma(0) = y\}$. In other words, E_f is the pullback space in the pullback diagram

(3.2)
$$E_{f} \xrightarrow{\tilde{f}} P(M; -, x_{1})$$

$$\downarrow \pi_{f} \qquad \downarrow p_{0}$$

$$N \xrightarrow{f} M$$

where $\pi_f(y, \gamma) = y$, $\tilde{f}(y, \gamma) = \gamma$, and $p_0(\gamma) = \gamma(0)$. The space E_f is known as the homotopy fiber of f, for E_f is of the same homotopy type as the fiber in the case of a fibration. Now the transport T is a formal power series in X with coefficients being forms on P(M). In this section, we shall restrict the coefficients of T to the space $P(M; -, x_1)$ so that T shall be taken as an element of $\Lambda(P(M; -, x_1))[[X]]$. Then $\pi_f^*\Phi \wedge \tilde{f}^*T$ is a well-defined element of $\Lambda(E_f)[Y; [X]]$ and gives rise to a

linear map

$$(3.3) C_*(E_i) \to k[Y; [X]]$$

so that, for every smooth cube σ of E_f , $\sigma \mapsto \int_{\sigma} \pi_f^* \Phi \wedge \tilde{f}^* T$.

Let ω be a k[[X]]-valued connection, and $\hat{\theta}$ a derivation of k[[X]] so that the twisting cochain condition (2.2) holds. Let the derivation $\hat{\theta}$ be further extended to a derivation of k[Y; [X]]. If the condition

(3.4)
$$\partial \left(\pi_f^* \Phi \wedge \tilde{f}^* T \right) = d \left(\pi_f^* \Phi \wedge \tilde{f}^* T \right)$$

holds, then the Stokes formula implies that the boundary operator of the normalized smooth cubic chain complex $C_*(E_f)$ and the derivation ∂ of k[Y; [X]] are compatible with the map (3.3). If $\partial \partial = 0$, then (3.3) is a chain map.

LEMMA 3.1. If the pair (Φ, ∂) satisfies the torsion condition (3.1), then the condition (3.4) holds.

PROOF. The restriction of the endpoint map p_1 to $P(M; -, x_1)$ is a constant map so that $p_1^*\omega = 0$. The formula (2.3) becomes

$$dT = \partial T - p_0^* \omega \wedge T.$$

Using also the twisting cochain condition (2.2), we have

$$\begin{split} \partial \left(\pi_{f}^{*} \Phi \wedge \tilde{f}^{*} T \right) &= \pi_{f}^{*} \partial \Phi \wedge \tilde{f}^{*} T + \pi_{f}^{*} (J \Phi) \wedge \tilde{f}^{*} \partial T \\ &= \pi_{f}^{*} (d \Phi - J \Phi \wedge f^{*} \omega) \wedge \tilde{f}^{*} T + \pi_{f}^{*} (J \Phi) \wedge \tilde{f}^{*} (d T + p_{0}^{*} \omega \wedge T). \end{split}$$

Hence (3.4) follows from the commutativity $f\pi_t = p_0 \tilde{f}$.

- **4.** The canonical element. The main objective of this paper is to study a C^{∞} map $f: N \to M$. Just for the sake of simplicity, let us assume that the homology groups of M and N over k are finite dimensional. Related to this map f, a few constructions are given as follows:
- (I) Let $[z_1], \ldots, [z_m]$ be a basis for the reduced homology group $\tilde{H}_{*}(M; k)$. Let $X = \{X_1, \ldots, X_m\}$ be indeterminates so deg $X_i = -1 + \deg[z_i]$. Thus k[[X]] can be taken as the completion of the graded tensor algebra on the graded vector space $V = s^{-1}\tilde{H}_{*}(M; k)$ obtained from $\tilde{H}_{*}(M; k)$ through depressing the degree by 1.
- (II) Let $Y = \{Y_1, \dots, Y_l\}$ be a basis of $H_*(N; k)$. Then we have k[Y; [X]], which is the free right k[[X]]-module generated by $H_*(N; k)$.
- (III) Let A be a differential graded subalgebra of $\Lambda(M)$ and B a subcomplex of $\Lambda(N)$ such that the inclusions $A \subset \Lambda(M)$ and $B \subset \Lambda(N)$ respectively induce isomorphisms in cohomology. Assume, moreover, $B \wedge f^*A \subset B$.
 - (IV) We choose a direct sum decomposition.

$$(4.1A) A = H_A \oplus C_A \oplus dA$$

into graded subspaces, where H_A consists of closed elements such that the inclusion $H_A \subset A$ induces an isomorphism $H_A \simeq H^*(A)$. It follows that C_A consists of nonclosed elements and $dC_A = dA$. Similarly, we choose a direct sum decomposition

$$(4.1B) B = H_R \oplus C_R \oplus dB.$$

The decompositions (4.1A) and (4.1B) will be referred to as the respective Hodge type decompositions of A and B.

Theorem 1.3.1 of [4] asserts that, with respect to every Hodge type decomposition (4.1A), there exists a unique pair (ω, ∂) satisfying the following conditions:

- (a) $\omega = \sum w_i X_i + \sum w_{ij} X_i X_j + \cdots$ is a k[[X]]-valued connection on M restricted to A such that $w_1, \ldots, w_m \in H_A$ and their cohomology classes $[w_1], \ldots, [w_m]$ form a basis dual to the homology basis $\{[z_1], \ldots, [z_m]\}$. Moreover, $w_{ij}, w_{ijk}, \ldots \in C_A$.
- (b) ∂ is a derivation of k[[X]] such that the twisting cochain condition (2.2) holds and $\partial \partial = 0$.

REMARK. Though Theorem 1.3.1 of [4] is stated for the case of $A = \Lambda(M)$, its proof is valid for any A as described above.

THEOREM 4.1. Given the constructions (I)–(IV) as above, there exists a unique pair (Φ, ∂) , where ∂ is a derivation of k[Y; [X]] compatible with that of k[[X]], and

$$\Phi = \sum_{\lambda} Y_{\lambda} \left(v_{\lambda} + \sum_{i} v_{\lambda i} X_{i} + \sum_{i,j} v_{\lambda ij} X_{i} X_{j} + \cdots \right)$$

is an element of B[Y; [X]] satisfying the following conditions:

(a) $v_{\lambda} \in H_B$ and $v_{\lambda i}, v_{\lambda i j}, \ldots \in C_B$ with

$$\deg v_{\lambda ij\cdots k} = \deg(Y_{\lambda}X_iX_j\cdots X_k).$$

- (b) $\{[v_1], \ldots, [v_l]\}$ is a basis of $H_{DR}^*(N)$ dual to the basis $\{Y_1, \ldots, Y_l\}$ of $H_*(N; k)$.
- (c) The pair (Φ, ∂) satisfies the torsion condition (3.1). Moreover $\partial \partial = 0$.

We shall call (Φ, ∂) the canonical pair and Φ the canonical element of the C^{∞} map $f: N \to M$ with respect to the Hodge type decompositions (4.1A) and (4.1B).

The topological significance of the differential ϑ is that, under reasonable conditions, $H(k[Y;[X]],\vartheta)$ coincides with $H_*(E_f;k)$ provided M is simply connected. More precisely, the complex $(k[Y;[X]],\vartheta)$ has a natural filtration and gives rise to a spectral sequence, which is the Eilenberg-Moore spectral sequence. For details, see §8.

The next two examples seem to indicate that the canonical element Φ may have analytic significance.

EXAMPLE 1. Let M and N be compact Riemannian manifolds. Write $A = \Lambda(M)$ and $B = \Lambda(N)$. There are canonical Hodge decompositions of A and B such that H_A and H_B are the respective spaces of harmonic forms on M and N. For every C^{∞} map $f \colon N \to M$, there is a unique pair (Φ_f, δ_f) . The canonical element

$$\Phi_f = \sum Y_{\lambda} \left(v_{\lambda}(f) + \sum v_{\lambda i}(f) X_i + \cdots \right)$$

is an invariant of the mapping space $C^{\infty}(M, N)$.

Example 2. Let us consider a C^{∞} map

$$f: N = \mathbb{R}^m \to \mathbb{S}^n$$
,

where S^n is taken as a Riemannian manifold.

According to step (I), we have a single indeterminate X of degree n-1. In step (II), $H_*(R^m:k)$ is generated by a single element Y of degree 0. In step (III), let $A = \Lambda(S^m)$ and $B = \Lambda(R^m)$. Take any Hodge type decompositions (4.1A) and

(4.1B). Then $H_B = k$ and H_A has a basis $\{1, w\}$ where w is an n-form with $\int_{S^n} w = 1$. Let the pair (ω, ∂) be such that $\omega = wX$ and ∂ is a trivial differential. Then conditions of step (IV) hold. According to Theorem 4.1, there is a unique pair (Φ, ∂) with

$$\Phi = Y(1 + v_1X + v_2X^2 + \cdots), \quad \deg V_i = i(n-1),$$

so that $\partial \Phi = d\Phi - J\Phi \wedge f^*\omega$.

If we let ϑ be the trivial differential of k[Y; [X]] and let $v_i \in C_B$ be recursively determined by the condition

$$dv_i = (-1)^{i(n-1)} v_{i-1} \wedge f^* w, \qquad i \geqslant 1.$$

then the pair (Φ, ∂) will meet the requirement and is uniquely determined.

Let l be the largest integer such that $v_l \neq 0$. Then l is an invariant of the C^{∞} map f, which depends only on the choice of the Riemannian metric for S^n and that of the Hodge type decomposition for $\Lambda(R^m)$.

Finally we observe that the usual proof for the Poincaré lemma for R^m is based on a deformation $F: R^m \times I \to R^m$ given by $(x, t) \mapsto tx$. This induces a cochain homotopy $\int_F: B \to B$ of degree -1 such that, for every p-form u on R^m , p > 0, $u = \int_F du + d\int_F u$. This means that, if the euclidean structure and the origin of R^m are given, then there is a canonical Hodge type decomposition of B with $H_B = k$ and $C_B = \int_F dB$.

5. Proof of Theorem 4.1. Let $\Psi \in B[Y; [X]]$. Given $s \ge 0$, let $[\Psi]_s$ denote the sum of all terms of the type $Y_{\lambda}X_{i_1} \cdots X_{i_r}$ of Ψ , and set

$$\Psi_{(s)} = [\Psi]_0 + [\Psi]_1 + \cdots + [\Psi]_s$$

which is obtained from Ψ by truncating terms of all $Y_{\lambda}X_{i_1} \cdots X_{i_r}$ with r > s.

According to Theorem 1.3.1 of [4], the Hodge type decomposition (4.1A) yields a unique pair (ω, ∂) as described before. In order to extend the derivation ∂ of the graded algebra k[[X]] to that of k[Y;[X]] as a graded right k[[X]]-module, it suffices to specify values of each ∂Y .

We are going to inductively construct a sequence $(\Phi_{(s)}, \partial_s)$ on $s \ge 0$ satisfying the following conditions:

- (a) $\Phi_{(s)} = \Phi_{(s-1)} + \sum v_{\lambda i_1 \cdots i_s} Y_{\lambda} X_{i_1} \cdots X_{i_s}$ with $\Phi_{(-1)} = 0$ where each $v_{\lambda i_1 \cdots i_s}$ is a form on N of degree equal to $\deg(Y_{\lambda} X_{i_1} \cdots X_{i_s})$.
- (b) ∂_s is a derivation of k[Y; [X]] compatible with the derivation ∂ of k[[X]] such that

$$\partial_s Y_{\lambda} = \partial_{s-1} Y_{\lambda} + \sum_{i_1, \dots, i_s} b_{\mu i_1 \dots i_s}^{(\lambda)} X_{i_1} \dots X_{i_s}$$

with $\partial_{-1}Y_{\lambda} = 0$ and the coefficients $b_{\mu i_1 \cdots i_s}^{(\lambda)} \in k$.

(c) The condition

$$\left(\partial_s \Phi_{(s)} - d\Phi_{(s)} + J\Phi_{(s)} \wedge f^*\omega\right)_{(s)} = 0$$

holds.

We first observe that the above conditions imply

$$\left(\partial_{s}\partial_{s}\Phi_{(s)}\right)_{(s+1)}=0.$$

In fact,

$$(\partial_{s}\partial_{s}\Phi_{(s)})_{(s+1)} = (\partial_{s}(d\Phi_{(s)} - J\Phi_{(s)} \wedge f *\omega))_{(s+1)}$$

$$= (d(\partial_{s}\Phi_{(s)}) - J\partial_{s}\Phi_{(s)} \wedge f *\omega - \Phi_{(s)} \wedge f *\partial\omega)_{(s+1)}$$

$$= (d(d\Phi_{(s)} - J\Phi_{(s)} \wedge f *\omega) - J(d\Phi_{(s)} - J\Phi_{(s)} \wedge f *\omega)$$

$$\wedge f *\omega - \Phi_{(s)} - \Phi_{(s)} \wedge f *(-d\omega + J\omega \wedge \omega))_{(s+1)}$$

$$= 0.$$

Let \mathfrak{F}'^{s} denote the totality of elements Ψ of B[Y; [X]] such that

$$[\Psi]_0 = [\Psi]_1 = \cdots = [\Psi]_{s-1} = 0.$$

It is clear that, for every element $\Psi \in \mathfrak{J}^{2}$, $\partial_{s}\Phi \equiv \partial_{s-1}\Psi \mod \mathfrak{J}^{2}$.

Our problem is to construct, by induction on s, the forms $v_{\lambda i_1 \cdots i_s}$ and the coefficients $b_{\mu i_1 \cdots i_s}^{(\lambda)}$. Observe that $\Phi_{(0)} = \sum v_{\lambda} Y_{\lambda}$ and

$$\partial_s \left(\Phi_{(s)} - \Phi_{(0)} \right) = \partial_{s-1} \left(\Phi_{(s-1)} - \Phi_{(0)} \right) \mod \mathfrak{J}^{s+1}.$$

Moreover,

$$\left(J\Phi_{(s)}\wedge f*\omega\right)_{(s)}=\left(J\Phi_{(s-1)}\wedge f*\omega\right)_{(s)}.$$

Thus (5.1) yields

$$(5.3)_s \qquad \sum \left(h_{\lambda i_1 \cdots i_s} - dv_{\lambda i_1 \cdots i_s}\right) Y_{\lambda} X_{i_1} \cdots X_{i_s} = R_s,$$

where $h_{\lambda i_1 \cdots i_n} = \sum b_{\lambda i_1 \cdots i_n}^{(\lambda)} v_{\mu}$ and

$$R_{s} = \left(-\partial_{s-1}\Phi_{(s-1)} + d\Phi_{(s-1)} - J\Phi_{(s-1)} \wedge f^{*}\omega\right)_{(s)}.$$

It remains to solve the equation (5.3)_s for $h_{i_1 \cdots i_s} \in H_B$ and $v_{\lambda i_1 \cdots i_s} \in C_B$. According to the induction hypothesis, R_s is known, and $R_s \equiv 0 \mod \mathfrak{T}^{s}$ so that

$$R_s = \sum r_{\lambda i_1 \cdots i_s} Y_{\lambda} X_{i_1} \cdots X_{i_s}.$$

Also,

$$dR_{s} \equiv -\partial_{s-1}d\Phi_{(s-1)} + (Jd\Phi_{(s-1)}) \wedge f^{*}\omega - \Phi_{(s-1)} \wedge f^{*}d\omega \mod \mathfrak{F}^{\prime s+1}$$

$$\equiv -\partial_{s-1}d\Phi_{(s-1)} + (J\partial_{s-1}\Phi_{(s-1)} + \Phi_{(s-1)} \wedge Jf^{*}\omega) \wedge f^{*}\omega$$

$$- \Phi_{(s-1)} \wedge f^{*}d\omega \mod \mathfrak{F}^{\prime s+1}$$

$$\equiv -\partial_{s-1}d\Phi_{(s-1)} + (J\partial_{s-1}\Phi_{(s-1)}) \wedge f^{*}\omega + \Phi_{(s-1)} \wedge \partial f^{*}\omega \mod \mathfrak{F}^{\prime s+1}$$

$$\equiv -\partial_{s-1}d\Phi_{(s-1)} + \partial_{s-1}(J\Phi_{(s-1)} \wedge f^{*}\omega) \mod \mathfrak{F}^{\prime s+1}$$

$$\equiv -\partial_{s-1}\partial_{s-1}\Phi_{(s-1)} \mod \mathfrak{F}^{\prime s+1}$$

$$\equiv 0 \mod \mathfrak{F}^{\prime s+1}.$$

This means that each form $r_{\lambda i_1 \cdots i_s}$ is closed and belongs to $H_B \oplus dB = H_B \oplus dC_B$. Hence the theorem is proved.

6. Topological justification. This section contains a proof of the next result.

THEOREM 6.1. Let M and N be C^{∞} manifolds having finite Betti numbers, and let M be simply connected. Then the chain map (3.3) induces an isomorphism

(6.1)
$$H_{*}(E_{f};k) \simeq H_{*}(k[Y;[X]]).$$

As in §4.2 of [6], we use A_f' to denote the subcomplex of $\Lambda(E_f)$ spanned by all elements of the type $\pi_f^*v \wedge f^* \wedge \int w_1' \cdots w_r'$ with $v \in \Lambda(N)$ and $w_1', \dots, w_r' \in A$, $r \ge 0$. Let $\overline{B}(A)$ denote the reduced bar construction of A (in the usual sense under the conditions: $A^0 = k$ and $A^1 \cap d\Lambda^0(M) = 0$ and, otherwise, in a slightly modified sense as in [13]). Then there is an isomorphism

$$\Lambda(N) \otimes \overline{B}(A) \simeq A_f'$$

such that $v \otimes [w'_1| \cdots |w'_r|] \mapsto \pi_f^* v \wedge \tilde{f}^* f w'_1 \cdots w'_r$, where $\Lambda(N) \otimes \overline{B}(A)$ is just the one-sided bar construction $B(\Lambda(N)|A|k)$ with $\Lambda(N)$ taken as a differential graded A-module via the map $A \subset \Lambda(M) \xrightarrow{f^*} \Lambda(N)$. Theorem 0.1 of [6] (Theorem 4.3.1 of [5]) implies that there is an isomorphism $H^*(A'_f) \simeq H^*(E_f, k)$ through integration. The dual of the chain map (3.3) has a factorization

$$\operatorname{Hom}_{k}(k[Y;[X]],k) \xrightarrow{\tau} A'_{t} \to \operatorname{Hom}_{k}(C_{*}(E_{t}),k)$$

given by

$$h \mapsto h(\pi_f^*\Phi \wedge \tilde{f}^*T) \mapsto \int h(\pi_f^*\Phi \wedge \tilde{f}^*T),$$

where the linear functional h on k[Y; [X]] is extended to B[Y; [X]], and the integral $\int h(\pi_f^*\Phi \wedge \tilde{f}^*T)$ is taken to be a smooth cochain. It follows from (3.4) that τ is a cochain map. In fact

$$\tau \delta h = h \left(\partial \left(\pi_f^* \Phi \wedge \tilde{f}^* T \right) \right) = d\tau h.$$

It remains to show that τ induces an isomorphism

(6.2)
$$H^*(k[Y;[X]]) \simeq H^*(A'_t).$$

This will be verified through spectral sequences.

The chain complex k[Y; [X]], which may be taken as a subcomplex of B[Y; [X]], has a descending filtration $\{\Im'\}$ with $\Im' = k[Y; [X]] \cap \Im''$. The resulting spectral sequence $\{\hat{E}'\}$ is such that

$$\hat{E}_p^1 = H_{\bullet}(N;k) \otimes \big(\otimes^p s^{-1} \tilde{H}_{\bullet}(M;k) \big),$$

where the graded group $s^{-1}\tilde{H}_{*}(M;k)$ is obtained from $H_{*}(M;k)$ by replacing $H_{0}(M;k)$ with 0 and then depressing the degree by 1. The dual cochain complex $\operatorname{Hom}_{k}(k[Y;[X]],k)$ has an ascending filtration, whose resulting spectral sequence $\{\hat{E}_{r}\}$ is such that

$$\hat{E}_{i}^{p} = H^{*}(N;k) \otimes (\otimes^{p} s^{-1} \tilde{H}^{*}(M;k)),$$

where the graded group $s^{-1}\tilde{H}^*(M; k)$ is dual to $s^{-1}\tilde{H}_*(M; k)$.

The complex $A_f \approx \Lambda(N) \otimes \overline{B}(A)$ has an ascending filtration $\{ \mathfrak{F}'A_f' \}$ whose resulting spectral sequence $\{ E_r \}$ is such that

$$E_1^p = H_{\mathrm{DR}}^*(N) \otimes (\otimes^p s^{-1} H_{\mathrm{DR}}^*(M)).$$

Now we are going to verify that the map τ preserves filtration. Let $\{x_{\lambda i_1 \dots i_s}\}$ be the basis of the graded space $\operatorname{Hom}_k(k[Y;[X]],k)$ dual to the basis $\{Y_{\lambda}X_{i_1} \dots X_{i_s}\}$ of k[Y;[X]]. Let $\{\mathfrak{F}_r^*\}$ be the filtration of $\operatorname{Hom}_k(k[Y;[X]],k)$. Then \mathfrak{F}_r^* has a basis consisting of all $x_{\lambda i_1 \dots i_r}$, s > r. Recall that

$$\omega = \sum w_i X_i + \sum w_{ij} X_i X_j + \cdots$$

and

$$T = 1 + \int \omega + \int \omega \omega + \cdots$$

$$= 1 + \sum \int w_i X_i + \sum \left(\int w_i w_j + \int w_{ij} \right) X_i X_j + \cdots$$

We make the identification $A'_f = \Lambda(N) \otimes \overline{B}(A)$ and write $v \otimes [w'_1| \cdots |w'_r] = v[w'_1| \cdots |w'_r]$. Then

$$\pi_f^* \Phi \wedge \tilde{f}^* T = \sum Y_{\lambda} \Big(\pi_f^* v_{\lambda} + \sum \pi_f^* v_{\lambda i} X_i + \cdots \Big) \wedge \tilde{f}^* T \\
= \sum v_{\lambda} [Y_{\lambda} + \sum (v_{\lambda} [w_i] + v_{\lambda i}) Y_{\lambda} X_i \\
+ \sum (v_{\lambda} ([w_i|w_i] + [w_{ij}]) + v_{\lambda i} [w_j] + v_{\lambda ij}) Y_{\lambda} X_i X_j + \cdots.$$

Since $\mathfrak{F}'A'_f$ is spanned by all $v[w'_1|\cdots|w'_s]$, s < r, we have

$$\tau(x_{\lambda}) = v_{\lambda}[], \quad \tau(x_{\lambda_i}) = v_{\lambda}[w_i] + v_{\lambda_i}[] \equiv v_{\lambda}[w_i] \mod \mathfrak{F}^1 A_I',$$

and, in general,

$$\tau(x_{\lambda_{i_1}\cdots i_r}) \equiv v_{\lambda}[w_{i_1}|\cdots|w_{i_r}] \mod \mathfrak{F}'A'_f.$$

Clearly τ preserves filtration and, moreover, induces an isomorphism $\hat{E}_1 \simeq E_1$. The spectral sequences $\{\hat{E}_r\}$ and $\{E_r\}$ converge respectively to $H^*(k[Y;[X]])$ and $H^*(A'_I)$. Hence we have the isomorphism (6.2), and the theorem is proved.

BIBLIOGRAPHY

- 1. D. Anick, A model of Adam-Hilton type for fiber squares (preprint).
- 2. K. T. Chen, Connection, holonomy and path space homology, Differential Geometry, Proc. Sympos. Pure Math., vol. 27, Amer. Math. Soc., Providence, R.I., 1975, pp. 39-52.
- 3. _____, Reduced bar constructions on de Rham complexes, Collection of Papers in Honor of Samuel Eilenberg, Academic Press, New York, 1976, pp. 19-32.
- 4. _____, Extension of C^{∞} function algebra by integrals and Malcev completion of π_1 , Adv. in Math. 23 (1977), 181–210.
 - 5. _____, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977), 831-879.
- 6. _____, Pullback de Rham cohomology of the free path fibration, Trans. Amer. Math. Soc. 242 (1978), 307-318.
- 7. P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274.
 - 8. P. Grivel, Formes différentielles et suites spectrales, Ann. Inst. Fourier (Grenoble) 29 (1979), 17-37.
- 9. V. K. A. M. Gugenheim, On a modified Eilenberg-Moore Theorem, Geometric Applications of Homotopy Theory. II, Lecture Notes in Math., vol. 658, Springer-Verlag, Berlin, 1978, pp. 177–190.

- 10. V. K. A. M. Gugenheim and J. P. May, On the theory and applications of differential torsion products, Mem. Amer. Math. Soc. No. 142 (1974).
- 11. R. M. Hain, Twisting cochains and duality between minimal algebras and minimal Lie algebras, Trans. Amer. Math. Soc. 277 (1983), 397-411.
- 12. S. Halperin, Rational fibrations, minimal models, and fibrings of homogeneous spaces, Trans. Amer. Math. Soc. 244 (1978), 199-222.
- 13. S. Halperin and J. Stasheff, Obstructions to homotopy equivalences, Adv. in Math. 32 (1979), 233-279.
- 14. J. M. Lamaire, Modeles minimaux pour les algebres de chaines, Publ. Dép. Math. (Lyon) 13 (1976), 13-26.
 - 15. D. Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205-295.
- 16. L. Smith, Lectures on the Eilenberg-Moore spectral sequence, Lecture Notes in Math., vol. 134, Springer-Verlag, Berlin and New York, 1970.
- 17. D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269-331.
- 18. D. Tanré, *Homotopie rationelle: Modèles de Chen, Quillen, Sullivan*, Lecture Notes in Math., vol. 1025, Springer-Verlag, Berlin and New York, 1983.
 - 19. W. T. Wu, Theory of I*-functors in algebraic topology, Sci. Sinica 18 (1975), 464-482.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 61801